مرادپور، ع،. صارمی، ح.(1399). شناسایی گونههای Fusarium و مایکوتوکسین دئوکسینیوالنول در جیره غذایی مرغ. پایاننامه کارشناسی ارشد، دانشگاه تهران، 83ص.
Bravo-Ruiz, G., Ruiz-Roldán, C., & Roncero, M. I. G. (2013). Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Molecular plant-microbe interactions, 26(9), 1054-1067.
Caldwell, D., & Iyer-Pascuzzi, A. S. (2019). A scanning electron microscopy technique for viewing plant− microbe interactions at tissue and cell-type resolution. Phytopathology, 109(7), 1302-1311.
Cassandri, M., Smirnov, A., Novelli, F., Pitolli, C., Agostini, M., Malewicz, M., ... & Raschellà, G. (2017). Zinc-finger proteins in health and disease. Cell Death Discov. 2017; 3: 17071. Přejít k původnímu zdroji.
Ding, Z., Xu, T., Zhu, W., Li, L., & Fu, Q. (2020). A MADS-box transcription factor FoRlm1 regulates aerial hyphal growth, oxidative stress, cell wall biosynthesis and virulence in Fusarium oxysporum f. sp. cubense. Fungal biology, 124(3-4), 183-193.
Ding, Z., Qi, Y., Zeng, F., Peng, J., Xie, Y., & Zhang, X. (2018). A transcription factor FoSwi6 regulates physiology traits and virulence in Fusarium oxysporum f. sp. cubense. Acta Phytopathologica Sinica, 48(5), 601-610.
Denisov, Y., Freeman, S., & Yarden, O. (2011). Inactivation of Snt2, a BAH/PHD‐containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum. Molecular plant pathology, 12(5), 449-461.
Fernandes, J. S., Angelo, P. C. S., Cruz, J. C., Santos, J. M. M., Sousa, N. R., & Silva, G. F. (2016). Post-transcriptional silencing of the SGE1 gene induced by a dsRNA hairpin in Fusarium oxysporum f. sp cubense, the causal agent of Panama disease.
Geiser, D. M., Aoki, T., Bacon, C. W., Baker, S. E., Bhattacharyya, M. K., Brandt, M. E., ... & Zhang, N. (2013). One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology, 103(5), 400-408.
Han, G., Lu, C., Guo, J., Qiao, Z., Sui, N., Qiu, N., & Wang, B. (2020). C2H2 zinc finger proteins: master regulators of abiotic stress responses in plants. Frontiers in plant science, 11, 115.
Li, C., Zuo, C., Deng, G., Kuang, R., Yang, Q., Hu, C., ... & Yi, G. (2013). Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PloS one, 8(7), e70226.
Liu, S., Li, J., Zhang, Y., Liu, N., Viljoen, A., Mostert, D., ... & Li, C. (2020). Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR 4. New Phytologist, 225(2), 913-929.
López‐Berges, M. S. (2020). ZafA‐mediated regulation of zinc homeostasis is required for virulence in the plant pathogen Fusarium oxysporum. Molecular plant pathology, 21(2), 244-249.
López‐Berges, M. S., Hera, C., Sulyok, M., Schäfer, K., Capilla, J., Guarro, J., & Di Pietro, A. (2013). The velvet complex governs mycotoxin production and virulence of F usarium oxysporum on plant and mammalian hosts. Molecular Microbiology, 87(1), 49-65.
López-Berges, M. S., Capilla, J., Turrà, D., Schafferer, L., Matthijs, S., Jöchl, C., ... & Di Pietro, A. (2012). HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. The Plant Cell, 24(9), 3805-3822.
López‐Díaz, C., Rahjoo, V., Sulyok, M., Ghionna, V., Martín‐Vicente, A., Capilla, J., ... & López‐Berges, M. S. (2018). Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 19(2), 440-453.
Ma, L. J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O'Donnell, K., Trail, F., ... & Kazan, K. (2013). Fusarium pathogenomics. Annual review of microbiology, 67, 399-416.
Mallebrera, B., Prosperini, A., Font, G., & Ruiz, M. J. (2018). In vitro mechanisms of Beauvericin toxicity: A review. Food and Chemical Toxicology, 111, 537-545.
Niño‐Sánchez, J., Casado‐Del Castillo, V., Tello, V., De Vega‐Bartol, J. J., Ramos, B., Sukno, S. A., & Díaz Mínguez, J. M. (2016). The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. Molecular plant pathology, 17(7), 1124-1139.
Qi, X., Liu, L., & Wang, J. (2019). Stress response regulator FoSkn7 participates in the pathogenicity of Fusarium oxysporum f. sp. cubense race 4 by conferring resistance to exogenous oxidative stress. Journal of general plant pathology, 85(5), 382-394.
Qi, X., Guo, L., Yang, L., & Huang, J. (2013). Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiological and Molecular Plant Pathology, 84, 76-85.
Rheeder, J. P., Marasas, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied and environmental microbiology, 68(5), 2101-2105.
Ruiz-Roldán, C., Pareja-Jaime, Y., González-Reyes, J. A., & G. Roncero, M. I. (2015). The transcription factor Con7-1 is a master regulator of morphogenesis and virulence in Fusarium oxysporum. Molecular Plant-Microbe Interactions, 28(1), 55-68.
Seetharam, A., & Stuart, G. W. (2013). A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. Bmc Genomics, 14(1), 1-7.
Takken, F., & Rep, M. (2010). The arms race between tomato and Fusarium oxysporum. Molecular plant pathology, 11(2), 309-314.
Teakle, G. R., & Gilmartin, P. M. (1998). Two forms of type IV zinc-finger motif and their kingdom-specific distribution between the flora, fauna and fungi. Trends in biochemical sciences, 23(3), 100-102.
Thatcher, L. F., Gardiner, D. M., Kazan, K., & Manners, J. M. (2012). A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Molecular Plant-Microbe Interactions, 25(2), 180-190.
Tollot, M., Assmann, D., Becker, C., Altmüller, J., Dutheil, J. Y., Wegner, C. E., & Kahmann, R. (2016). The WOPR protein Ros1 is a master regulator of sporogenesis and late effector gene expression in the maize pathogen Ustilago maydis. PLoS pathogens, 12(6), e1005697.
van der Does, H. C., Fokkens, L., Yang, A., Schmidt, S. M., Langereis, L., Lukasiewicz, J. M., ... & Rep, M. (2016). Transcription factors encoded on core and accessory chromosomes of Fusarium oxysporum induce expression of effector genes. PLoS genetics, 12(11), e1006401.
van Dam, P., Fokkens, L., Ayukawa, Y., van der Gragt, M., Ter Horst, A., Brankovics, B., ... & Rep, M. (2017). A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Scientific reports, 7(1), 1-15.
van der Does, H. C., Fokkens, L., Yang, A., Schmidt, S. M., Langereis, L., Lukasiewicz, J. M., ... & Rep, M. (2016). Transcription factors encoded on core and accessory chromosomes of Fusarium oxysporum induce expression of effector genes. PLoS genetics, 12(11), e1006401.
Yun, Y., Zhou, X., Yang, S., Wen, Y., You, H., Zheng, Y., ... & Wang, Z. (2019). Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection. Current genetics, 65(3), 773-783.
Zhang, Y., Yang, H., Turra, D., Zhou, S., Ayhan, D. H., DeIulio, G. A., ... & Ma, L. J. (2020). The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications biology, 3(1), 1-12.
Zuriegat, Q., Zheng, Y., Liu, H., Wang, Z., & Yun, Y. (2021). Current progress on pathogenicity‐related transcription factors in Fusarium oxysporum. Molecular Plant Pathology, 22(7), 882-895.